
ZKX SOLUTIONS GROUP WWW.ZKXSOLUTIONS.COM INFO@ZKXSOLUTIONS.COM

ZKX™ is a lightweight, platform-agnostic authentication solution

suitable for use in tactical, strategic, and zero trust environments. ZKX

is based on the mathematical principles of zero-knowledge-proofs,

a methodical way in which one party, A (the Prover), can prove their

knowledge or possession of some secret to another party, B (the

Verifier), without revealing any bits of information about the secret.

Take, for example, the following question: Does numerical entry G belong

within the set of numbers H? Traditionally, A could prove the state of G and

H’s relationship to B by revealing nothing except one bit of information –

“yes”, G does belong to H; or “no” G does not belong to H. However, formal

advancements in the structure of zero-knowledge proofs have allowed A

to prove their knowledge of G and H’s relationship to B without revealing

any information about it. ZKX utilizes these advanced cryptographic

functions to achieve novel operational security in the context of multi-

factor authentication (MFA).

One of the more popular methods of proving identity with zero-knowledge

proofs is outlined by Feige, Fiat, and Shamir (FFS) (1987). In order to

facilitate the FFS zero-knowledge proof (ZKP) scheme, a trusted center

is required to publish a public Blum modulus, N, which itself is composed

of two large prime numbers, p and q, both of the form 4r+3. N is public

to all users in a given domain, and can be used universally, however

no-one should know its factorization. Once this modulus is produced and

published, this trusted computing center can be shut down, as it serves no

further function in FFS.

Afterward this modulus is published, and users (provers) can register or

enroll themselves in this FFS scheme by selecting k random numbers from

the ring ZN. These individual numbers are known colloquially as a user’s

“secrets” and are typically represented by Sk. All of a user’s secrets are

collected in one vector and are represented by S = {S1,…, Sk}. In an analogy

ZKX™ TECHNICAL OVERVIEW

ZKX SOLUTIONS GROUP WWW.ZKXSOLUTIONS.COM INFO@ZKXSOLUTIONS.COM

to the RSA cryptographic scheme, this vector would be the user’s secret

key. However, in terms of FFS and ZKPs of identity, it is more appropriate to

think of S as a distinct collection of secret keys. After creating their vector

of secrets, users can then calculate a vector of public data (effectively

their public key), referred to as V. This public vector is calculated as V = S2

(mod N) = {S1
2,…, Sk

2} (mod N). This public vector is then published; it will be

used by the Verifier to validate the Prover’s knowledge and possession of

their secrets. Even though the public V was constructed from the private

S, the secret values used within S are still secure, given that the numerical

factorization of modular squares is a computationally hard problem. This

stage of the FFS process is known as enrollment.

After a Prover is enrolled with the FFS scheme, they are capable of proving

that their registered secrets are indeed in their custody to another party,

the Verifier. After reading or receiving the Prover’s public data, V, the

Verifier can engage the Prover in ZKPs. First, the Prover selects a random

number, r (a private value known as the commitment or round ID), which is

then used to compute a new value, x (a public value known as the witness)

in the form x = ± r2 (mod N). This witness is sent from the Prover to the

Verifier. The Verifier then generates a k-length Boolean vector,

b ϵ {0,1}k, and sends it to the Prover. This vector is referred to as the

challenge. The role of the challenge is to select the public data which

the Prover’s identity will be challenged against. Likewise, the challenge

informs the Prover which of their credentials they must supply in order

to accurately respond to the Verifier’s challenge. The Prover answers the

Verifier’s challenge by calculating its response, y, as: y = rS1
b1S2

b2…Sk
bk (mod

N). This response is returned to the Verifier, who can then check its validity

with the following comparison: y2 = ± xV1
b1V2

b2…Vk
bk. If this equivalency is

indeed true, this proves the Prover’s knowledge of S as follows:

y = rS1
b1S2

b2. . .Sk
bk (mod N)

y2 = (rS1
b1S2

b2. . .Sk
bk)2 (mod N)

y2 = (r2)(S1
b1)2(S2

b2)2. . .(Sk
bk)2 (mod N)

y2 = x(S1
b1)2(S2

b2)2. . .(Sk
bk)2 (mod N) à substitute x = ±r2 (mod N)

y2 = xV1
b1V2b2. . .Vk

bk (mod N) à substitute S2 = V

This process constitutes one round of FFS-based ZKP. In FFS, the

probability that a malicious is user is able to successfully verify illegitimate

knowledge is proven to be 2-kt, where k is the length of a Prover’s secret

ZKX SOLUTIONS GROUP WWW.ZKXSOLUTIONS.COM INFO@ZKXSOLUTIONS.COM

vector (S) and t is the number of ZKP rounds undertaken with the Verifier.

In order to achieve efficient practical security, the configuration kt = 20 is

put forward as a recommended standard.

During the enrollment phase of the FFS identity proofing scheme, users

could populate their secret key vector with the outputs of other approved

authenticators, credentials which they possess, or values derived from

their credentials instead of randomly selected numbers. This would

then yield corresponding public key values, represented in V, which are

now exclusively tied to the user’s identity. These values would then be

published either publicly or specifically to some repository accessible to

the Verifier. This data would then be used to authenticate the Prover on a

regular basis, requiring the inputting of their various authentication factors

to release the necessary secrets they put forward during enrollment. This

is the primary idea behind using FFS as a vehicle for MFA.

ZKX IN DETAIL
ZKX is a novel, lightweight, multifactor authentication technology which

verifies and authenticates user identities via fundamental ZKP algorithms

including FFS and other similar protocols. Other popular ZKPs of identity

are similar to FFS in their structure, but rely on different, computationally

hard “one-way” problems to protect the secret data of users. For example,

FFS relies on the difficulty of factoring modular squares, where the Schnorr

protocol relies on the difficulty of the discrete logarithm problem.

ZKX utilizes a proprietary hashing method in order to derive functional

ZKP secrets from traditional authenticators and identity evidence. Any

repeatable hashing function can be used to accomplish this feat within

ZKX. Artifacts rated from superior strength to fair strength (as outlined

in NIST SP 800-63-3) are compatible within the ZKX architecture, and

can be used to verify a claimant’s identity. Authenticating secrets are

split between what the human user will be expected to reproduce (e.g.,

password, PIN, RFID tag, etc.) and cryptographic data that resides on the

device they have enrolled with. By themselves, these secret fragments

are not enough to compromise any sensitive information about a

Prover or their private authenticators. Authenticating secrets must be

intentionally repopulated by the Prover through their release from another

authenticator: whether it be physical, software-based, or in accordance

with the principles of knowledge-based verification (KBV) like a PIN or a

ZKX SOLUTIONS GROUP WWW.ZKXSOLUTIONS.COM INFO@ZKXSOLUTIONS.COM

password. These key shares (the device-based and user-supplied data)

are recombined, and injected with the per-round randomness native to

ZKP algorithms (r, the round ID) which constitutes a Prover’s response to a

Verifier’s challenge. Because of this structure, ZKX is resistant to breaches

or leaks of information regarding authentication data. Even if the devices

or both Prover and Verifier are compromised, there is no risk of revealing

any authenticator data or identity-based evidence. This feature uniquely

ties a user to the device they have enrolled with as a single “Prover”, but

can be adjusted to securely accommodate non-person entities (NPEs) as

well.

Similarly, ZKX utilizes its proprietary hash expansion technique in order to

derive multiple functional ZKP secrets from a single authenticating factor.

This dramatically expands the number of secret keys, k, a Prover can be

registered to use, further lowering the probability that an illegitimate user

could successfully misrepresent themselves using ZKX. Because of this

on-the-fly, multiple secret derivation from one distinct factor, Provers

can be challenged using multiple keys while only having to perform one

authenticating input. If their input is legitimate and honest, they will be

able to correctly answer any number of Verifier challenges with ease.

If an adversary is attempting to misrepresent their identity, they would

need to successfully guess multiple authenticating values instead of

just one. Because of its multi-factored nature, the probability that an

adversary could cheat the ZKX system is exponentially reduced by its hash

expansion.

The emerging trend of the Zero-Trust Architecture (ZTA) has encapsulated

much of the strategic focus of the United States government and military

for the foreseeable future. While ZKX is capable of securely and rigidly

and seamlessly authenticating users in any organizational structure,

it is designed with special attention given to the requirements and

expectations of the mechanics of the ZTA. ZKX’s form factor is that

of a cryptographic software multi-factor authentication solution, a

platform compatible with federal AAL3 requirements. ZKX is platform

and communication agnostic, and is able to be employed using open

standard technologies, allowing it to easily interoperate with other network

components, if necessary via API or through a wrapper relationship.

ZKX also includes a novel mechanism for users to attest their identities

via ZKPs, enabling robust and constant zero-knowledge application

ZKX SOLUTIONS GROUP WWW.ZKXSOLUTIONS.COM INFO@ZKXSOLUTIONS.COM

session management. This session management is customizable to fit the

requirements of local policies and can be revoked by an administrator if

necessary.

ZKX is highly configurable and can be used to satisfy whatever

requirements are applicable to the mission. ZKX can strictly and

dynamically enforce local access policies regarding network resources,

services, and platforms. Because ZKX is based on an arbitrarily repeatable

proofing mechanism, Provers can repeatedly prove their knowledge or

possession of the secrets tied to their unique identity until the Verifier

is sufficiently satisfied. This can extend to the policy considerations an

organization has in place to protect their resources. If a Prover must utilize

multiple issued authentication artifacts in order to satisfy a given policy,

more authentication rounds can be imposed on the user such that no

doubt remains that they do indeed possess the necessary authenticators.

Due to the nature of ZKPs, there is a measurable probability of assurance

that an identity claimed by a Prover is legitimate. The probability than an

adversary can successfully misrepresent their identity in ZKX’s modified

FFS scheme, for example, is 2-kt. Where t is the number of ZKP rounds

undertaken between Prover and Verifier, and k is the total number of user

secrets (i.e., the length of vector S), which itself is the total number of

authenticators a Prover could be expected to reproduce (n) multiplied by

the number of functional secrets each authenticator is expanded into via

the hash expansion process (m). This probability is now calculable as 2-nmt,

and can be used to set thresholds for various “trust scores” which users

must meet before they are able to access different resources.

For more information on ZKX, or a discussion with our Chief Technologist or

Chief Scientist, please email info@zkxsolutions.com.

©2022 ZKX Solutions. Subject to change without notice or obligation. 20220510

